Утверждены Приказом МЧС России от 18 июня 2003 г. N 314

Дата введения -1 августа 2003 года

НОРМЫ ПОЖАРНОЙ БЕЗОПАСНОСТИ

ОПРЕДЕЛЕНИЕ КАТЕГОРИЙ ПОМЕЩЕНИЙ, ЗДАНИЙ И НАРУЖНЫХ УСТАНОВОК ПО ВЗРЫВОПОЖАРНОЙ И ПОЖАРНОЙ ОПАСНОСТИ

DETERMINATION OF CATEGORIES OF ROOMS, BUILDINGS AND EXTERNAL INSTALLATIONS ON EXCPLOSION AND FIRE HAZARD

НПБ 105-03

Разработаны Главным управлением Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий (ГУГПС МЧС России) и Федеральным учреждением "Всероссийский ордена "Знак Почета" научно-исследовательский институт противопожарной обороны Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" (ФГУ ВНИИПО МЧС России).

Внесены и подготовлены к утверждению нормативно-техническим отделом Главного управления Государственной противопожарной службы (ГУГПС МЧС России).

КонсультантПлюс: примечание.

В официальном тексте документа, видимо, допущена опечатка: имеется в виду письмо Минюста РФ от $26.06.2003 \, \text{N} \, 07/6463$ -ЮД, а не от $27.06.2003 \, \text{N} \, 07/6504$ -ЮД.

Письмом Минюста России от 27.06.2003 N 07/6504-ЮД признаны не нуждающимися в государственной регистрации.

Утверждены Приказом МЧС России от 18.06.2003 N 314.

Дата введения в действие - с момента опубликования.

Взамен НПБ 105-95, НПБ 107-97.

Настоящие нормы устанавливают методику определения категорий помещений и зданий (или частей зданий между противопожарными стенами - пожарных отсеков) <*> производственного и складского назначения по взрывопожарной и пожарной опасности в зависимости от количества и пожаровзрывоопасных свойств находящихся (обращающихся) в них веществ и материалов с учетом особенностей технологических процессов размещенных в них производств, а также методику определения категорий наружных установок производственного и складского назначения <**> по пожарной опасности.

Методика определения категорий помещений и зданий по взрывопожарной и пожарной опасности должна использоваться в проектно-сметной и эксплутационной документации на здания, помещения и наружные установки.

Категории помещений и зданий предприятий и учреждений определяются на стадии проектирования зданий и сооружений в соответствии с настоящими нормами и ведомственными нормами технологического проектирования, утвержденными в установленном порядке.

Требования норм к наружным установкам должны учитываться в проектах на строительство, расширение, реконструкцию и техническое перевооружение, при изменениях технологических процессов и при эксплуатации наружных установок. Наряду с настоящими нормами следует также руководствоваться положениями ведомственных норм технологического проектирования, касающихся категорирования наружных установок, утвержденных в установленном порядке.

В области оценки взрывоопасности настоящие нормы выделяют категории взрывопожароопасных помещений и зданий, более детальная классификация которых по взрывоопасности и необходимые защитные мероприятия должны регламентироваться самостоятельными нормативными документами.

<*> Далее по тексту - помещения и здания.

<**> Далее по тексту - наружные установки.

Категории помещений и зданий, определенные в соответствии с настоящими нормами, следует применять для установления нормативных требований по обеспечению взрывопожарной и пожарной безопасности указанных помещений и зданий в отношении планировки и застройки, этажности, площадей, размещения помещений, конструктивных решений, инженерного оборудования.

Настоящие нормы не распространяются:

на помещения и здания для производства и хранения взрывчатых веществ (далее - BB), средств инициирования BB, здания и сооружения, проектируемые по специальным нормам и правилам, утвержденным в установленном порядке;

на наружные установки для производства и хранения ВВ, средств инициирования ВВ, наружные установки, проектируемые по специальным нормам и правилам, утвержденным в установленном порядке, а также на оценку уровня взрывоопасности наружных установок.

Термины и их определения приняты в соответствии с нормативными документами по пожарной безопасности.

Под термином "Наружная установка" в настоящих нормах понимается комплекс аппаратов и технологического оборудования, расположенных вне зданий, с несущими и обслуживающими конструкциями.

1. ОБШИЕ ПОЛОЖЕНИЯ

1. По взрывопожарной и пожарной опасности помещения подразделяются на категории A, Б, B1 - B4, Г и Д, а здания - на категории A, Б, B, Г и Д.

```
По пожарной опасности наружные установки подразделяются на категории A , B , B , \Gamma и A .
```

2. Категории взрывопожарной и пожарной опасности помещений и зданий определяются для наиболее неблагоприятного в отношении пожара или взрыва периода, исходя из вида находящихся в аппаратах и помещениях горючих веществ и материалов, их количества и пожароопасных свойств, особенностей технологических процессов.

Категории пожарной опасности наружных установок определяются исходя из вида находящихся в наружных установках горючих веществ и материалов, их количества и пожароопасных свойств, особенностей технологических процессов.

3. Определение пожароопасных свойств веществ и материалов производится на основании результатов испытаний или расчетов по стандартным методикам с учетом параметров состояния (давления, температуры и т.д.).

Допускается использование справочных данных, опубликованных головными научно-исследовательскими организациями в области пожарной безопасности или выданных Государственной службой стандартных справочных данных.

Допускается использование показателей пожарной опасности для смесей веществ и материалов по наиболее опасному компоненту.

2. КАТЕГОРИИ ПОМЕЩЕНИЙ ПО ВЗРЫВОПОЖАРНОЙ И ПОЖАРНОЙ ОПАСНОСТИ

4. Категории помещений по взрывопожарной и пожарной опасности принимаются в соответствии с табл. 1.

Таблица 1

Категория	Характеристика веществ и материалов, находящихся
помещения	(обращающихся) в помещении
1	2
Α	Горючие газы, легковоспламеняющиеся жидкости с
взрывопо-	температурой вспышки не более 28 ℃ в таком
жароопасная	количестве, что могут образовывать взрывоопасные
	парогазовоздушные смеси, при воспламенении которых
	развивается расчетное избыточное давление взрыва в
	помещении, превышающее 5 кПа.
	Вещества и материалы, способные взрываться и гореть
	при взаимодействии с водой, кислородом воздуха или
	друг с другом в таком количестве, что расчетное
	избыточное давление взрыва в помещении превышает 5
	кПа

Б	Горючие пыли или волокна, легковоспламеняющиеся
взрывопо-	жидкости с температурой вспышки более 28 ℃, горючие
жароопасная	жидкости в таком количестве, что могут образовывать
	взрывоопасные пылевоздушные или паровоздушные смеси,
	при воспламенении которых развивается расчетное
	избыточное давление взрыва в помещении, превышающее
	5 кПа
B1 - B4	Горючие и трудногорючие жидкости, твердые горючие и
пожароопас-	трудногорючие вещества и материалы (в том числе пыли
ные	и волокна), вещества и материалы, способные при
	взаимодействии с водой, кислородом воздуха или друг
	с другом только гореть, при условии, что помещения,
	в которых они имеются в наличии или обращаются, не
	относятся к категориям А или Б
Γ	Негорючие вещества и материалы в горячем,
	раскаленном или расплавленном состоянии, процесс
	обработки которых сопровождается выделением
	лучистого тепла, искр и пламени; горючие газы,
	жидкости и твердые вещества, которые сжигаются или
	утилизируются в качестве топлива
Д	Негорючие вещества и материалы в холодном состоянии

Примечание. Разделение помещений на категории В1 - В4 регламентируется положениями, изложенными в табл. 4.

5. Определение категорий помещений следует осуществлять путем последовательной проверки принадлежности помещения к категориям, приведенным в табл. 1, от высшей (А) к низшей (Д).

3. МЕТОДЫ РАСЧЕТА КРИТЕРИЕВ ВЗРЫВОПОЖАРНОЙ ОПАСНОСТИ ПОМЕЩЕНИЙ

Выбор и обоснование расчетного варианта

- 6. При расчете значений критериев взрывопожарной опасности в качестве расчетного следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором во взрыве участвует наибольшее количество веществ или материалов, наиболее опасных в отношении последствий взрыва.
- В случае, если использование расчетных методов не представляется возможным, допускается определение значений критериев взрывопожарной опасности на основании результатов соответствующих научно-исследовательских работ, согласованных и утвержденных в установленном порядке.
- 7. Количество поступивших в помещение веществ, которые могут образовать взрывоопасные газовоздушные или паровоздушные смеси, определяется исходя из следующих предпосылок:
 - а) происходит расчетная авария одного из аппаратов согласно п. 6;
 - б) все содержимое аппарата поступает в помещение;
- в) происходит одновременно утечка веществ из трубопроводов, питающих аппарат, по прямому и обратному потокам в течение времени, необходимого для отключения трубопроводов.

Расчетное время отключения трубопроводов определяется в каждом конкретном случае исходя из реальной обстановки и должно быть минимальным с учетом паспортных данных на запорные устройства, характера технологического процесса и вида расчетной аварии.

Расчетное время отключения трубопроводов следует принимать равным:

времени срабатывания системы автоматики отключения трубопроводов согласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0.000001 в год или обеспечено резервирование ее элементов;

120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов;

300 с при ручном отключении.

Не допускается использование технических средств для отключения трубопроводов, для которых время отключения превышает приведенные выше значения.

Под "временем срабатывания" и "временем отключения" следует понимать промежуток времени от начала возможного поступления горючего вещества из трубопровода (перфорация, разрыв, изменение номинального давления и т.п.) до полного прекращения поступления газа или

жидкости в помещение. Быстродействующие клапаны-отсекатели должны автоматически перекрывать подачу газа или жидкости при нарушении электроснабжения.

В исключительных случаях в установленном порядке допускается превышение приведенных выше значений времени отключения трубопроводов специальным решением соответствующих федеральных министерств и других федеральных органов исполнительной власти по согласованию с Госгортехнадзором России на подконтрольных ему производствах и предприятиях и МЧС России;

- г) происходит испарение с поверхности разлившейся жидкости; площадь испарения при разливе на пол определяется (при отсутствии справочных данных) исходя из расчета, что 1 л смесей и растворов, содержащих 70% и менее (по массе) растворителей, разливается на площади 0,5 кв. м, а остальных жидкостей на 1 кв. м пола помещения;
- д) происходит также испарение жидкости из емкостей, эксплуатируемых с открытым зеркалом жидкости, и со свежеокрашенных поверхностей;
- е) длительность испарения жидкости принимается равной времени ее полного испарения, но не более 3600 с.
- 8. Количество пыли, которое может образовать взрывоопасную смесь, определяется из следующих предпосылок:
- а) расчетной аварии предшествовало пыленакопление в производственном помещении, происходящее в условиях нормального режима работы (например, вследствие пылевыделения из негерметичного производственного оборудования);
- б) в момент расчетной аварии произошла плановая (ремонтные работы) или внезапная разгерметизация одного из технологических аппаратов, за которой последовал аварийный выброс в помещение всей находившейся в аппарате пыли.
- 9. Свободный объем помещения определяется как разность между объемом помещения и объемом, занимаемым технологическим оборудованием. Если свободный объем помещения определить невозможно, то его допускается принимать условно равным 80% геометрического объема помещения.

Расчет избыточного давления взрыва для горючих газов, паров легковоспламеняющихся и горючих жидкостей

10. Избыточное давление взрыва ДЕЛЬТА Р для индивидуальных горючих веществ, состоящих из атомов C, H, O, N, Cl, Br, I, F, определяется по формуле:

где:

P – максимальное давление взрыва стехиометрической max

газовоздушной или паровоздушной смеси в замкнутом объеме, определяемое экспериментально или по справочным данным в соответствии с требованиями п. 3. При отсутствии данных допускается принимать Р равным 900 кПа;

max

Р - начальное давление, кПа (допускается принимать равным 101 0 кПа);

m — масса горючего газа (ГГ) или паров легковоспламеняющихся (ЛВЖ) и горючих жидкостей (ГЖ), вышедших в результате расчетной аварии в помещение, вычисляемая для ГГ по формуле (6), а для паров ЛВЖ и ГЖ по формуле (11), кг;

 ${\tt Z}$ – коэффициент участия горючего во взрыве, который может быть рассчитан на основе характера распределения газов и паров в объеме помещения согласно Приложению. Допускается принимать значение ${\tt Z}$ по табл. 2;

V — свободный объем помещения, куб. м; св ро — плотность газа или пара при расчетной температуре t , г,п

кг х м , вычисляемая по формуле:

где:

М - молярная масса, кг x кмоль ;

-1 V - мольный объем, равный 22,413 куб. м х кмоль ;

t - расчетная температура, °C. В качестве расчетной

температуры следует принимать максимально возможную температуру воздуха в данном помещении в соответствующей климатической зоне или максимально возможную температуру воздуха по технологическому регламенту с учетом возможного повышения температуры в аварийной ситуации. Если такого значения расчетной температуры t по

каким-либо причинам определить не удается, допускается принимать ее равной 61 $^{\circ}$ C;

С — стехиометрическая концентрация ГГ или паров ЛВЖ и ГЖ, % ст

(об.), вычисляемая по формуле:

где:

бета = n + ----- - - стехиометрический коэффициент С 4 2

О и галоидов в молекуле горючего;

К - коэффициент, учитывающий негерметичность помещения и н

неадиабатичность процесса горения. Допускается принимать К равным н

3.

Таблица 2

Вид горючего вещества	Значение Z
Водород	1,0
Горючие газы (кроме водорода)	0,5
Легковоспламеняющиеся и горючие жидкости,	0,3
нагретые до температуры вспышки и выше	
Легковоспламеняющиеся и горючие жидкости,	0,3
нагретые ниже температуры вспышки, при	
наличии возможности образования аэрозоля	
Легковоспламеняющиеся и горючие жидкости,	0
нагретые ниже температуры вспышки, при	
отсутствии возможности образования аэрозоля	

11. Расчет ДЕЛЬТА Р для индивидуальных веществ, кроме упомянутых в п. 10, а также для смесей может быть выполнен по формуле:

12. В случае обращения в помещении горючих газов, легковоспламеняющихся или горючих жидкостей при определении значения массы m, входящей в формулы (1) и (4), допускается учитывать работу аварийной вентиляции, если она обеспечена резервными вентиляторами, автоматическим пуском при превышении предельно допустимой взрывобезопасной концентрации и электроснабжением по первой категории надежности (ПУЭ), при условии расположения устройств для удаления воздуха из помещения в непосредственной близости от места возможной аварии.

При этом массу m горючих газов или паров легковоспламеняющихся или горючих жидкостей, нагретых до температуры вспышки и выше, поступивших в объем помещения, следует разделить на коэффициент K, определяемый по формуле:

$$K = A T + 1, \tag{5}$$

где:

 \overline{A} - кратность воздухообмена, создаваемого аварийной -1 вентиляцией, с ;

T - продолжительность поступления горючих газов и паров легковоспламеняющихся и горючих жидкостей в объем помещения, с (принимается по п. 7).

13. Масса m, κr , поступившего в помещение при расчетной аварии газа определяется по формуле:

$$m = (V + V) po,$$

$$a T T$$
(6)

где:

V — объем газа, вышедшего из аппарата, куб. м; а V — объем газа, вышедшего из трубопроводов, куб. м. $_{\rm T}$ При этом:

$$V = 0,01P V,$$
 a 1

где:

Р - давление в аппарате, кПа;1V - объем аппарата, куб. м;

$$V = V + V,$$

$$T 1T 2T$$
(8)

гле:

V - объем газа, вышедшего из трубопровода до его отключения, 1 т

куб. м;

V объем газа, вышедшего из трубопровода после его 2т отключения, куб. м;

$$V = q T, (9)$$

q - расход газа, определяемый в соответствии с технологическим регламентом в зависимости от давления в трубопроводе, его

диаметра, температуры газовой среды и т.д., куб. м х с ; Т - время, определяемое по п. 7, с;

где:

Р - максимальное давление в трубопроводе по технологическому регламенту, кПа;

r - внутренний радиус трубопроводов, м;

L - длина трубопроводов от аварийного аппарата до задвижек, м. 14. Масса паров жидкости т, поступивших в помещение при

наличии нескольких источников испарения (поверхность разлитой жидкости, поверхность со свеженанесенным составом, открытые емкости и т.п.), определяется из выражения:

$$m = m + m + m$$
, (11)
 $p \in MK \subset B.OKP$

где:

т - масса жидкости, испарившейся с поверхности разлива, кг;

т - масса жидкости, испарившейся с поверхностей открытых емк

емкостей, кг;

m – масса жидкости, испарившейся с поверхностей, на

которые нанесен применяемый состав, кг.

При этом каждое из слагаемых в формуле (11) определяется по формуле:

$$m = W F T, (12)$$

где:

-1 -2

W - интенсивность испарения, кг х с х м ;

F - площадь испарения, кв. м, определяемая в соответствии с И

п. 7 в зависимости от массы жидкости m , вышедшей в помещение.

Если аварийная ситуация связана с возможным поступлением жидкости в распыленном состоянии, то она должна быть учтена в формуле (11) введением дополнительного слагаемого, учитывающего общую массу поступившей жидкости от распыляющих устройств исходя из продолжительности их работы.

- 15. Масса m , кг, вышедшей в помещение жидкости определяется в п соответствии с п. 7.
- 16. Интенсивность испарения W определяется по справочным и экспериментальным данным. Для ненагретых выше температуры окружающей среды ЛВЖ при отсутствии данных допускается рассчитывать W по формуле:

$$W = 10 \quad \text{pra } \setminus M \text{ P ,} \tag{13}$$

где:

- эта коэффициент, принимаемый по табл. 3 в зависимости от скорости и температуры воздушного потока над поверхностью испарения;
- ${\tt P}$ давление насыщенного пара при расчетной температуре н жидкости t , определяемое по справочным данным в соответствии с

р требованиями п. 3, кПа.

Таблица 3

Скорость воздушного потока в помещении,	Значение коэффициента эта при температуре t, °C, воздуха в помещении						
M X C	10 15 20 30 3						
0 0,1 0,2 0,5 1,0	1,0 3,0 4,6 6,6 10,0	1,0 2,6 3,8 5,7 8,7	1,0 2,4 3,5 5,4 7,7	1,0 1,8 2,4 3,6 5,6	1,0 1,6 2,3 3,2 4,6		

Расчет избыточного давления взрыва для горючих пылей

17. Расчет избыточного давления взрыва ДЕЛЬТА Р, кПа, производится по формуле (4), где коэффициент Z участия взвешенной пыли во взрыве рассчитывается по формуле:

$$Z = 0, 5F, \tag{14}$$

где F — массовая доля частиц пыли размером менее критического, с превышением которого аэровзвесь становится взрывобезопасной, т.е. неспособной распространять пламя. В отсутствие возможности получения сведений для оценки величины Z допускается принимать Z=0,5.

18. Расчетная масса взвешенной в объеме помещения пыли m, κr , образовавшейся в результате аварийной ситуации, определяется по формуле:

$$m = m + m$$
, (15)

где:

 ${\tt m}$ - расчетная масса взвихрившейся пыли, кг;

вз

- m расчетная масса пыли, поступившей в помещение в ав
 результате аварийной ситуации, кг.
 - 19. Расчетная масса взвихрившейся пыли т определяется по

$$m = K m,$$

$$B3 B3 \Pi$$

$$(16)$$

где:

К – доля отложившейся в помещении пыли, способной перейти во вз

взвешенное состояние в результате аварийной ситуации. При отсутствии экспериментальных сведений о величине K допускается

полагать K = 0,9;

вз

 ${\tt m}$ - масса отложившейся в помещении пыли к моменту аварии, кг. ${\tt n}$

20. Расчетная масса пыли, поступившей в помещение в результате аварийной ситуации, m , определяется по формуле:

ав

$$m = (m + q T) K$$
, (17) as an

где:

m – масса горючей пыли, выбрасываемой в помещение из ап

аппарата, кг;

q — производительность, с которой продолжается поступление пылевидных веществ в аварийный аппарат по трубопроводам до момента -1

их отключения, кг х с ;

Т - время отключения, определяемое по пункту 7 "в", с;

К – коэффициент пыления, представляющий отношение массы п

взвешенной в воздухе пыли ко всей массе пыли, поступившей из аппарата в помещение. При отсутствии экспериментальных сведений о величине К допускается полагать:

П

для пылей с дисперсностью не менее 350 мкм - K = 0,5;

П

для пылей с дисперсностью менее 350 мкм - K = 1,0.

П

Величина m принимается в соответствии с π . π . 6 и 8.

ап

21. Масса отложившейся в помещении пыли к моменту аварии определяется по формуле:

$$K \\ T \\ m = -- (m + m), \\ T K 1 2$$
 (18)

где:

К - доля горючей пыли в общей массе отложений пыли;

Г

m – масса пыли, оседающей на труднодоступных для уборки 1

поверхностях в помещении за период времени между генеральными уборками, кг;

 ${\tt m}$ — масса пыли, оседающей на доступных для уборки 2 поверхностях в помещении за период времени между текущими уборками, кг;

К - коэффициент эффективности пылеуборки. Принимается при

У

ручной пылеуборке:

сухой - 0,6;

влажной - 0,7.

При механизированной вакуумной уборке:

пол ровный - 0,9;

пол с выбоинами (до 5% площади) - 0,7.

Под труднодоступными для уборки площадями подразумевают такие поверхности в производственных помещениях, очистка которых осуществляется только при генеральных пылеуборках. Доступными для уборки местами являются поверхности, пыль с которых удаляется в процессе текущих пылеуборок (ежесменно, ежесуточно и т.п.).

22. Масса пыли m (i = 1, 2), оседающей на различных i

поверхностях в помещении за межуборочный период, определяется по формуле:

$$m = M (1 - альфа)$$
 бета (i = 1, 2), (19) i i

гле

 ${\rm M} = {\rm SUM} \; {\rm M} - {\rm Macca} \; {\rm пыли}$, выделяющаяся в объем помещения за і ј 1ј

период времени между генеральными пылеуборками, кг;

М — масса пыли, выделяемая единицей пылящего оборудования за $1\,\dot{\mbox{\scriptsize 1}}$

указанный период, кг;

M = SUM M - масса пыли, выделяющаяся в объем помещения за 2 ј 2 ј

период времени между текущими пылеуборками, кг;

М – масса пыли, выделяемая единицей пылящего оборудования за2 j

указанный период, кг;

альфа — доля выделяющейся в объем помещения пыли, которая удаляется вытяжными вентиляционными системами. При отсутствии экспериментальных сведений о величине альфа полагают альфа = 0;

бета , бета – доли выделяющейся в объем помещения пыли, $1 \quad 2$

оседающей соответственно на труднодоступных и доступных для уборки поверхностях помещения (бета + бета = 1).

1 2

При отсутствии сведений о величине коэффициентов бета и бета 1 2

допускается полагать бета = 1, бета = 0.

1 2

23. Величина M (i = 1, 2) может быть также определена i

экспериментально (или по аналогии с действующими образцами производств) в период максимальной загрузки оборудования по формуле:

где:

G , G - интенсивность пылеотложений соответственно на 1j 2j

труднодоступных F (кв. м) и доступных F (кв. м) площадях, 1 ј

-2 -1

кг х м $\,$ х с ; $\,$ тау $\,$ промежуток времени соответственно между $\,$ 1 $\,$ 2

генеральными и текущими пылеуборками, с.

Определение категорий В1 - В4 помещений

24. Определение пожароопасной категории помещения осуществляется путем сравнения максимального значения удельной временной пожарной нагрузки (далее по тексту - пожарная нагрузка) на любом из участков с величиной удельной пожарной нагрузки, приведенной в табл. 4.

Таблица 4

Категории помещения	<u> </u>	Способ размещения
B1	Более 2200	Не нормируется
В2	1401 - 2200	См. п. 25
В3	181 - 1400	То же
B4	1 - 180	На любом участке пола помещения площадью 10 кв. м. Способ размещения участков пожарной нагрузки определяется согласно п. 25

25. При пожарной нагрузке, включающей в себя различные сочетания (смесь) горючих, трудногорючих жидкостей, твердых горючих и трудногорючих веществ и материалов в пределах пожароопасного участка, пожарная нагрузка Q, МДж, определяется по формуле:

$$\begin{array}{cccc}
n & p \\
Q = SUM & G & Q \\
i=1 & i & Hi
\end{array}$$
(21)

где:

G - количество i-го материала пожарной нагрузки, кг;

i p

Q — низшая теплота сгорания і—го материала пожарной ні

-1 нагрузки, МДж х кг .

-2

Удельная пожарная нагрузка g, МДж x м , определяется из соотношения:

$$g = -,$$

$$S$$
(22)

где S - площадь размещения пожарной нагрузки, кв. м (но не менее 10 кв. м).

В помещениях категорий В1 – В4 допускается наличие нескольких участков с пожарной нагрузкой, не превышающей значений, приведенных в табл. 4. В помещениях категории В4 расстояния между этими участками должны быть более предельных. В табл. 5 приведены рекомендуемые значения предельных расстояний 1 в зависимости от

величины критической плотности падающих лучистых потоков q ,

 2 кВт х м , для пожарной нагрузки, состоящей из твердых горючих и

-2

трудногорючих материалов. Значения l , приведенные в табл. 5, пр рекомендуются при условии, если H > 11 м; если H < 11 м, то предельное расстояние определяется как l = 1 + (11 – H), где l пр определяется из таблицы 5, H – минимальное расстояние от поверхности пожарной нагрузки до нижнего пояса ферм перекрытия (покрытия), м.

Таблица 5

q , кр –2	5	10	15	20	25	30	40	50
кВт х м								
l , м пр	12	8	6	5	4	3,8	3,2	2,8

Значения ${\bf q}$ для некоторых материалов пожарной нагрузки кр приведены в табл. 6.

Таблица 6

Материал	-2 q , кВт х м кр
Древесина (сосна влажностью 12%)	13,9
Древесно-стружечные плиты -3	8,3
(плотностью 417 кг x м)	
Торф брикетный	13,2
Торф кусковой	9,8
Хлопок-волокно	7,5
Слоистый пластик	15,4
Стеклопластик	15,3
Пергамин	17,4
Резина	14,8
Уголь	35,0
Рулонная кровля	17,4
Сено, солома (при минимальной влажности до 8%)	7,0

Если пожарная нагрузка состоит из различных материалов, то значение ${
m q}$ определяется по материалу с минимальным значением ${
m kp}$

Для материалов пожарной нагрузки с неизвестными значениями q

значения предельных расстояний принимаются l >= 12 м.

αп

Для пожарной нагрузки, состоящей из ЛВЖ или ГЖ, рекомендуемое расстояние 1 между соседними участками размещения (разлива) пр

пожарной нагрузки рассчитывается по формулам:

$$1 >= 15$$
 м при $H >= 11$, (23) пр

$$1 >= 26 - H$$
 при $H < 11$. (24)

Если при определении категорий B2 или B3 количество пожарной нагрузки Q, определенное по формуле 21, отвечает неравенству:

$$Q >= 0,64g$$
 H,

то помещение будет относиться к категориям В1 или В2 соответственно. Здесь g=2200~МДж/кв. м при $_{\text{T}}$ 1401 МДж/кв. м <= g <= 2200 МДж/кв. м и g=1400~МДж/кв. м при $_{\text{T}}$ 181 МДж/кв. м <= g <= 1400 МДж/кв. м.

Определение избыточного давления взрыва для веществ и материалов, способных взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом

26. Расчетное избыточное давление взрыва ДЕЛЬТА Р для веществ и материалов, способных взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом, определяется по приведенной выше методике, полагая Z=1 и принимая в качестве величины H энергию, выделяющуюся при взаимодействии (с учетом T сгорания продуктов взаимодействия до конечных соединений), или экспериментально в натурных испытаниях. В случае, когда определить ДЕЛЬТА P не представляется возможным, следует принимать ее превышающей S кIa.

Определение избыточного давления взрыва для взрывоопасных смесей, содержащих горючие газы (пары) и пыли

27. Расчетное избыточное давление взрыва ДЕЛЬТА Р для гибридных взрывоопасных смесей, содержащих горючие газы (пары) и пыли, определяется по формуле:

ДЕЛЬТА
$$P = ДЕЛЬТА P + ДЕЛЬТА P ,$$
 (25)

где:

ДЕЛЬТА Р - давление взрыва, вычисленное для горючего газа

(пара) в соответствии с п. п. 10 и 11;

ДЕЛЬТА Р – давление взрыва, вычисленное для горючей пыли в 2 соответствии с п. 17.

4. КАТЕГОРИИ ЗДАНИЙ ПО ВЗРЫВОПОЖАРНОЙ

И ПОЖАРНОЙ ОПАСНОСТИ

28. Здание относится к категории А, если в нем суммарная площадь помещений категории А превышает 5% площади всех помещений или 200 кв. м.

Допускается не относить здание к категории A, если суммарная площадь помещений категории A в здании не превышает 25% суммарной площади всех размещенных в нем помещений (но не более 1000 кв. м) и эти помещения оборудуются установками автоматического пожаротушения.

29. Здание относится к категории Б, если одновременно выполнены два условия: здание не относится к категории А;

суммарная площадь помещений категорий А и Б превышает 5% суммарной площади всех помещений или 200 кв. м.

Допускается не относить здание к категории Б, если суммарная площадь помещений категорий А и Б в здании не превышает 25% суммарной площади всех размещенных в нем помещений (но не более 1000 кв. м) и эти помещения оборудуются установками автоматического пожаротушения.

30. Здание относится к категории В, если одновременно выполнены два условия: здание не относится к категориям А или Б;

суммарная площадь помещений категорий А, Б и В превышает 5% (10%, если в здании отсутствуют помещения категорий А и Б) суммарной площади всех помещений.

Допускается не относить здание к категории В, если суммарная площадь помещений категорий А, Б и В в здании не превышает 25% суммарной площади всех размещенных в нем помещений (но не более 3500 кв. м) и эти помещения оборудуются установками автоматического пожаротушения.

31. Здание относится к категории Г, если одновременно выполнены два условия: здание не относится к категориям А, Б или В;

суммарная площадь помещений категорий А, Б, В и Г превышает 5% суммарной площади всех помещений.

Допускается не относить здание к категории Г, если суммарная площадь помещений категорий А, Б, В и Г в здании не превышает 25% суммарной площади всех размещенных в нем помещений (но не более 5000 кв. м) и помещения категорий А, Б, В оборудуются установками автоматического пожаротушения.

32. Здание относится к категории Д, если оно не относится к категориям А, Б, В или Г.

5. КАТЕГОРИИ НАРУЖНЫХ УСТАНОВОК ПО ПОЖАРНОЙ ОПАСНОСТИ

33. Категории наружных установок по пожарной опасности принимаются в соответствии с табл. 7.

Таблица 7

Категория наружной установки	Категории отнесения наружной установки к той или иной категории по пожарной опасности
н	Установка относится к категории A , если в ней н присутствуют (хранятся, перерабатываются, транспортируются) горючие газы; легковоспламеняющиеся жидкости с температурой вспышки не более 28 °C; вещества и/или материалы, способные гореть при взаимодействии с водой, кислородом воздуха и/или друг с другом; при условии, что величина индивидуального риска при возможном сгорании указанных веществ с —6 образованием волн давления превышает 10 в год на расстоянии 30 м от наружной установки
Б	Установка относится к категории Б , если в ней н присутствуют (хранятся, перерабатываются, транспортируются) горючие пыли и/или волокна;

	легковоспламеняющиеся жидкости с температурой вспышки более 28 °C; горючие жидкости; при условии, что величина индивидуального риска при возможном сгорании пыле- и/или паровоздушных смесей с образованием волн -6 давления превышает 10 в год на расстоянии 30 м от наружной установки
В	Установка относится к категории В , если в ней н присутствуют (хранятся, перерабатываются, транспортируются) горючие и/или трудногорючие жидкости; твердые горючие и/или трудногорючие вещества и/или материалы (в том числе пыли и/или волокна); вещества и/или материалы, способные при взаимодействии с водой, кислородом воздуха и/или друг с другом гореть; не реализуются критерии, позволяющие отнести установку к категориям А или Б; при условии, что н н величина индивидуального риска при возможном сгорании — 6 указанных веществ и/или материалов превышает 10 в год на расстоянии 30 м от наружной установки
г	Установка относится к категории Г, если в ней н присутствуют (хранятся, перерабатываются, транспортируются) негорючие вещества и/или материалы в горячем, раскаленном и/или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и/или пламени, а также горючие газы, жидкости и/или твердые вещества, которые сжигаются или утилизируются в качестве топлива
Д	Установка относится к категории Д , если в ней н присутствуют (хранятся, перерабатываются, транспортируются) в основном негорючие вещества и/или материалы в холодном состоянии и по перечисленным выше критериям она не относится к категориям А , Б , В , Г н н н н н

- 34. Определение категорий наружных установок следует осуществлять путем последовательной проверки их принадлежности к категориям, приведенным в табл. 7, от высшей (A) к низшей (Д). н
- 35. В случае, если из-за отсутствия данных представляется невозможным оценить величину индивидуального риска, допускается использование вместо нее следующих критериев.

Для категорий А и Б:

н н

горизонтальный размер зоны, ограничивающей газопаровоздушные смеси с концентрацией горючего выше нижнего концентрационного предела распространения пламени (НКПР), превышает 30 м (данный критерий применяется только для горючих газов и паров) и/или расчетное избыточное давление при сгорании газо-, паро- или пылевоздушной смеси на расстоянии 30 м от наружной установки превышает 5 кПа.

Для категории В:

Н

интенсивность теплового излучения от очага пожара веществ и/или материалов, указанных для категории В , на расстоянии 30 м $\,$

6. МЕТОДЫ РАСЧЕТА ЗНАЧЕНИЙ КРИТЕРИЕВ ПОЖАРНОЙ ОПАСНОСТИ НАРУЖНЫХ УСТАНОВОК

Метод расчета значений критериев пожарной опасности для горючих газов и паров

Выбор и обоснование расчетного варианта

36. Выбор расчетного варианта следует осуществлять с учетом годовой частоты реализации и последствий тех или иных аварийных ситуаций. В качестве расчетного для вычисления критериев пожарной опасности для горючих газов и паров следует принимать вариант аварии, для которого произведение годовой частоты реализации этого варианта Q и расчетного избыточного давления ДЕЛЬТА Р при

сгорании газопаровоздушных смесей в случае реализации указанного варианта максимально, то есть:

$$G = Q \times ДЕЛЬТА P = max.$$
 (26)

Расчет величины G производится следующим образом:

- а) рассматриваются различные варианты аварии и определяются из статистических данных или на основе годовой частоты аварий со сгоранием газопаровоздушных смесей Q для этих вариантов; wi
- б) для каждого из рассматриваемых вариантов определяются по изложенной ниже методике значения расчетного избыточного давления ДЕЛЬТА Р ;
- в) вычисляются величины G = Q х ДЕЛЬТА Р для каждого из і wi і рассматриваемых вариантов аварии, среди которых выбирается вариант с наибольшим значением G ;
- г) в качестве расчетного для определения критериев пожарной опасности принимается вариант, в котором величина G максимальна.

При этом количество горючих газов и паров, вышедших в атмосферу, рассчитывается исходя из рассматриваемого сценария аварии с учетом пунктов 38-43.

- 37. При невозможности реализации описанного выше метода в качестве расчетного следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором в образовании горючих газопаровоздушных смесей участвует наибольшее количество газов и паров, наиболее опасных в отношении последствий сгорания этих смесей. В этом случае количество газов и паров, вышедших в атмосферу, рассчитывается в соответствии с пунктами 38 43
- 38. Количество поступивших веществ, которые могут образовывать горючие газовоздушные или паровоздушные смеси, определяется исходя из следующих предпосылок:
- а) происходит расчетная авария одного из аппаратов согласно п. 36 или п. 37 (в зависимости от того, какой из подходов к определению расчетного варианта аварии принят за основу);
 - б) все содержимое аппарата поступает в окружающее пространство;
- в) происходит одновременно утечка веществ из трубопроводов, питающих аппарат, по прямому и обратному потоку в течение времени, необходимого для отключения трубопроводов.

Расчетное время отключения трубопроводов определяется в каждом конкретном случае исходя из реальной обстановки и должно быть минимальным с учетом паспортных данных на запорные устройства, характера технологического процесса и вида расчетной аварии.

Расчетное время отключения трубопроводов следует принимать равным:

времени срабатывания систем автоматики отключения трубопроводов согласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0,000001 в год или обеспечено резервирование ее элементов (но не более 120 с);

120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов;

300 с при ручном отключении.

Не допускается использование технических средств для отключения трубопроводов, для которых время отключения превышает приведенные выше значения.

Под "временем срабатывания" и "временем отключения" следует понимать промежуток времени от начала возможного поступления горючего вещества из трубопровода (перфорация, разрыв, изменение номинального давления и т.п.) до полного прекращения поступления газа или жидкости в окружающее пространство. Быстродействующие клапаны-отсекатели должны автоматически перекрывать подачу газа или жидкости при нарушении электроснабжения.

В исключительных случаях в установленном порядке допускается превышение приведенных выше значений времени отключения трубопроводов специальным решением соответствующих министерств или ведомств по согласованию с Госгортехнадзором России на подконтрольных ему производствах и предприятиях и МЧС России;

- г) происходит испарение с поверхности разлившейся жидкости; площадь испарения при разливе на горизонтальную поверхность определяется (при отсутствии справочных или иных экспериментальных данных) исходя из расчета, что 1 л смесей и растворов, содержащих 70% и менее (по массе) растворителей, разливается на площади 0,10 кв. м, а остальных жидкостей - на 0.15 кв. м:
- д) происходит также испарение жидкостей из емкостей, эксплуатируемых с открытым зеркалом жидкости, и со свежеокрашенных поверхностей;
- е) длительность испарения жидкости принимается равной времени ее полного испарения, но не более 3600 с.
- 39. Масса газа m, кг, поступившего в окружающее пространство при расчетной аварии, определяется по формуле:

$$m = (V + V) po,$$
 (27)

```
гле:
V - объем газа, вышедшего из аппарата, куб. м;
V - объем газа, вышедшего из трубопровода, куб. м;
Т
ро - плотность газа, кг х м .
 г
При этом:
                    V = 0,01P \times V,
                                                       (28)
                    a 1
Р - давление в аппарате, кПа;
V - объем аппарата, куб. м;
                    V = V + V
                                                       (29)
                    т 1т 2т
```

V - объем газа, вышедшего из трубопровода до его отключения, 1т куб. м; объем газа, вышедшего из трубопровода после его 2т отключения, куб. м;

$$V = q \times T, \tag{30}$$

гле:

 ${\tt q}$ — расход газа, определяемый в соответствии с технологическим регламентом в зависимости от давления в трубопроводе, его

диаметра, температуры газовой среды и т.д., куб. м х с ;

Т - время, определяемое по п. 38, с;

$$V = 0,01$$
 пи х P х (r L + r L + ... + r L), (31) 2π 2 1 1 2 2 n n

где:

P - максимальное давление в трубопроводе по технологическому 2

регламенту, кПа;

- r внутренний радиус трубопроводов, м;
- L длина трубопроводов от аварийного аппарата до задвижек, м.
- 40. Масса паров жидкости m, кг, поступивших в окружающее пространство при наличии нескольких источников испарения (поверхность разлитой жидкости, поверхность со свеженанесенным составом, открытые емкости и т.п.), определяется из выражения:

$$m = m + m + m + m + m$$
, (32)
p emk cb.okp nep

где:

m — масса жидкости, испарившейся с поверхности разлива, кг;

m – масса жидкости, испарившейся с поверхностей открытых емк

емкостей, кг;

m - масса жидкости, испарившейся с поверхностей, на св.окр

которые нанесен применяемый состав, кг;

 ${\tt m}$ — масса жидкости, испарившейся в окружающее пространство пер

в случае ее перегрева, кг.

При этом каждое из слагаемых (m , m , m) в формуле $p = \exp (-c \log p)$

(32) определяют из выражения:

$$m = W \times F \times T, \tag{33}$$

где:

$$-1$$
 -2

W - интенсивность испарения, кг х с х м ;

 ${\rm F}$ - площадь испарения, кв. м, определяемая в соответствии с и

п. 38 в зависимости от массы жидкости m , вышедшей в окружающее п

пространство;

Т - продолжительность поступления паров легковоспламеняющихся и горючих жидкостей в окружающее пространство согласно п. 38, с.

Величину м определяют по формуле (при T > T):

$$2C (T - T)$$
 $p a \kappa \mu \pi$
 $m = min \{0,8m; -----m\},$
 $\pi L \pi$
 $\mu C \pi$

(34)

гле:

m - масса вышедшей перегретой жидкости, кг;

П

С – удельная теплоемкость жидкости при температуре перегрева р

$$-1$$
 -1 жидкости Т , Дж х кг х К ;

а

T - температура перегретой жидкости в соответствии с а технологическим регламентом в технологическом аппарате или

оборудовании, К;

Т - нормальная температура кипения жидкости, К; кип

L – удельная теплота испарения жидкости при температуре исп

-1

перегрева жидкости T , Дж х кг .

Если аварийная ситуация связана с возможным поступлением жидкости в распыленном состоянии, то она должна быть учтена в формуле (32) введением дополнительного слагаемого, учитывающего общую массу поступившей жидкости от распыляющих устройств исходя из продолжительности их работы.

41. Масса m вышедшей жидкости, кг, определяется в п соответствии с п. 38.

42. Интенсивность испарения W определяется по справочным и экспериментальным данным. Для ненагретых ЛВЖ при отсутствии данных допускается рассчитывать W по формуле:

$$W = 10 \quad x \mid M \quad x \quad P,$$

$$H \qquad (35)$$

где:

-1

М - молярная масса, г х моль ;

P - давление насыщенного пара при расчетной температуре н

жидкости, определяемое по справочным данным в соответствии с требованиями п. 3, кПа.

43. Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу испарившегося СУГ -2

м из пролива, кг х м , по формуле: суг

гле:

-1

М - молярная масса СУГ, кг х моль ;

L – мольная теплота испарения СУГ при начальной температуре

```
-1
СУГ Т , Дж х моль ;
   Т - начальная температура материала, на поверхность которого
разливается СУГ, К;
   Т - начальная температура СУГ, К;
   лямбда - коэффициент теплопроводности материала, на
                                     -1 -1
    TB
поверхность которого разливается СУГ, Вт х м х К ;
    лямбда
   a = -----
                    - коэффициент температуропроводности
      С х ро
материала, на поверхность которого разливается СУГ, кв. м х с ;
  С - теплоемкость материала, на поверхность которого
                    -1 -1
разливается СУГ, Дж х кг х К ;
   ро - плотность материала, на поверхность которого
                   -3
разливается СУГ, кг х м ;
   t - текущее время, с, принимаемое равным времени полного
испарения СУГ, но не более 3600 с;
    Uхd
   Re = ---- - число Рейнольдса;
       ню
   U - скорость воздушного потока, м х с ;
          /4F
         / и
        / ---- - характерный размер пролива СУГ, м;
   ню - кинематическая вязкость воздуха, кв. м х с ;
   лямбда - коэффициент теплопроводности воздуха,
    -1 -1
BT X M X K .
   Формула (36) справедлива для СУГ с температурой T <= T .
При температуре СУГ Т > Т дополнительно рассчитывается масса
                 Ж
                     кип
перегретых СУГ m по формуле 34.
```

Расчет горизонтальных размеров зон, ограничивающих газо- и паровоздушные смеси с концентрацией горючего выше НКПР, при аварийном поступлении горючих газов и паров ненагретых легковоспламеняющихся жидкостей в открытое пространство

44. Горизонтальные размеры зоны, м, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени (С), вычисляют по формулам: $_{\rm HKRD}$

пер

для горючих газов (ГГ):

для паров ненагретых легковоспламеняющихся жидкостей (ЛВЖ):

где:

m - масса поступивших в открытое пространство ГГ ифп

аварийной ситуации, кг;

ро - плотность ГГ при расчетной температуре и атмосферном

давлении, кг х м ;

m - масса паров ЛВЖ, поступивших в открытое пространство за

время полного испарения, но не более 3600 с, кг;

ро - плотность паров ЛВЖ при расчетной температуре и

атмосферном давлении, кг х м ;

Р - давление насыщенных паров ЛВЖ при расчетной температуре, кПа;

К - коэффициент, принимаемый равным: К = Т / 3600 для ЛВЖ;

Т - продолжительность поступления паров ЛВЖ в открытое пространство, с;

С - нижний концентрационный предел распространения пламени нкпр

ГГ или паров ЛВЖ, % (об.);

М - молярная масса, кг х кмоль ;

V - мольный объем, равный 22,413 куб. м х кмоль ;

t - расчетная температура, °С.

p

В качестве расчетной температуры следует принимать максимально возможную температуру воздуха в соответствующей климатической зоне или максимально возможную температуру воздуха по технологическому регламенту с учетом возможного повышения температуры в аварийной ситуации. Если такого значения расчетной температуры t по

каким-либо причинам определить не удается, допускается принимать ее равной 61 °C.

45. За начало отсчета горизонтального размера зоны принимают внешние габаритные размеры аппаратов, установок, трубопроводов и т.п. Во всех случаях значение R должно быть не менее 0,3 м для

Расчет избыточного давления и импульса волны давления при сгорании смесей горючих газов и паров с воздухом в открытом пространстве

- 46. Исходя из рассматриваемого сценария аварии определяется масса m, кг, горючих газов и (или) паров, вышедших в атмосферу из технологического аппарата в соответствии с пунктами 38 43.
- 47. Величину избыточного давления ДЕЛЬТА Р, кПа, развиваемого при сгорании газопаровоздушных смесей, определяют по формуле:

где:

Р — атмосферное давление, кПа (допускается принимать равным 0 101 кПа);

r - расстояние от геометрического центра газопаровоздушного облака. м:

 ${\tt m}$ - приведенная масса газа или пара, кг, вычисляется по пр формуле:

$$m = (Q / Q) \times m \times Z,$$

$$np \quad Cr \quad 0$$
(40)

где:

-1

Q — удельная теплота сгорания газа или пара, Дж х кг ; сг

Z - коэффициент участия горючих газов и паров в горении, который допускается принимать равным 0,1;

Q — константа, равная 4,52 х 10 Дж х кг ; 0

m - масса горючих газов и (или) паров, поступивших в результате аварии в окружающее пространство, кг.

48. Величину импульса волны давления і, Па х с, вычисляют по формуле:

$$0,66$$
 $i = 123m$ / r. (41)

Метод расчета значений критериев пожарной опасности для горючих пылей

- 49. В качестве расчетного варианта аварии для определения критериев пожарной опасности для горючих пылей следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором в горении пылевоздушной смеси участвует наибольшее количество веществ или материалов, наиболее опасных в отношении последствий такого горения.
- 50. Количество поступивших веществ, которые могут образовывать горючие пылевоздушные смеси, определяется исходя из предпосылки о том, что в момент расчетной аварии произошла плановая (ремонтные работы) или внезапная разгерметизация одного из технологических

аппаратов, за которой последовал аварийный выброс в окружающее пространство находившейся в аппарате пыли.

51. Расчетная масса пыли, поступившей в окружающее пространство при расчетной аварии, определяется по формуле:

$$M = M + M$$
, (42)

где:

 ${\tt M}$ – расчетная масса поступившей в окружающее пространство горючей пыли, кг;

М - расчетная масса взвихрившейся пыли, кг;

вэ

 ${\tt M}$ — расчетная масса пыли, поступившей в результате аварийной ав ситуации, кг.

52. Величина M определяется по формуле: вз

$$M = K \times K \times M$$
, (43)

где:

К - доля горючей пыли в общей массе отложений пыли;

Г

К – доля отложенной вблизи аппарата пыли, способной перейти вз

во взвешенное состояние в результате аварийной ситуации. В отсутствие экспериментальных данных о величине K допускается

принимать K = 0,9;

вз

М — масса отложившейся вблизи аппарата пыли к моменту аварии, п $% \left(1\right) =1$ кг.

53. Величина M определяется по формуле: ав

$$M = (M + q \times T) \times K$$
, (44)

где:

М – масса горючей пыли, выбрасываемой в окружающее $a\pi$

пространство при разгерметизации технологического аппарата, кг; при отсутствии ограничивающих выброс пыли инженерных устройств следует полагать, что в момент расчетной аварии происходит аварийный выброс в окружающее пространство всей находившейся в аппарате пыли;

 ${\bf q}$ – производительность, с которой продолжается поступление пылевидных веществ в аварийный аппарат по трубопроводам до момента -1

их отключения, кг х с ;

- T расчетное время отключения, с, определяемое в каждом конкретном случае исходя из реальной обстановки. Следует принимать равным времени срабатывания системы автоматики, если вероятность ее отказа не превышает 0,000001 в год или обеспечено резервирование ее элементов (но не более 120 с); 120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов; 300 с при ручном отключении;
- K коэффициент пыления, представляющий отношение массы п взвешенной в воздухе пыли ко всей массе пыли, поступившей из

аппарата в помещение. В отсутствие экспериментальных данных о величине K допускается принимать: 0,5 — для пылей с дисперсностью п

не менее 350 мкм; 1,0 - для пылей с дисперсностью менее 350 мкм.

- 54. Избыточное давление ДЕЛЬТА Р для горючих пылей рассчитывается следующим образом:
 - а) определяют приведенную массу горючей пыли m , кг, по пр

формуле:

$$m = M \times Z \times H / H ,$$

$$mp \qquad T \qquad TO$$
(45)

где:

- ${\tt M}$ масса горючей пыли, поступившей в результате аварии в окружающее пространство, кг;
- Z коэффициент участия пыли в горении, значение которого допускается принимать равным 0,1. В отдельных обоснованных случаях величина Z может быть снижена, но не менее чем до 0,02;

Н - теплота сгорания пыли, Дж х кг ;

т

6 —1

Н - константа, принимаемая равной 4,6 х 10 Дж х кг ;

б) вычисляют расчетное избыточное давление ДЕЛЬТА Р, к Π а, по формуле:

где:

r - расстояние от центра пылевоздушного облака, м. Допускается отсчитывать величину r от геометрического центра технологической установки;

Р - атмосферное давление, кПа.

55. Величину импульса волны давления i, Па x c, вычисляют по формуле:

$$0,66$$
 $i = 123m / r.$ (47)

Метод расчета интенсивности теплового излучения

56. Интенсивность теплового излучения рассчитывают для двух случаев пожара (или для того из них, который может быть реализован в данной технологической установке):

пожар проливов ЛВЖ, ГЖ или горение твердых горючих материалов (включая горение пыли); "огненный шар" - крупномасштабное диффузионное горение, реализуемое при разрыве резервуара с горючей жидкостью или газом под давлением с воспламенением содержимого резервуара.

Если возможна реализация обоих случаев, то при оценке значений критерия пожарной опасности учитывается наибольшая из двух величин интенсивности теплового излучения.

57. Интенсивность теплового излучения q, кВт х м , для пожара пролива жидкости или при горении твердых материалов вычисляют по формуле:

$$q = E \quad x \quad F \quad x \quad \text{Tay,} \tag{48}$$

где:

 ${\tt E}$ - среднеповерхностная плотность теплового излучения f

-2

пламени, кВт х м ;

F - угловой коэффициент облученности;

q

тау - коэффициент пропускания атмосферы.

Значение E принимается на основе имеющихся экспериментальных ${\sf f}$

данных. Для некоторых жидких углеводородных топлив указанные данные приведены в табл. 8.

Таблица 8

СРЕДНЕПОВЕРХНОСТНАЯ ПЛОТНОСТЬ ТЕПЛОВОГО ИЗЛУЧЕНИЯ ПЛАМЕНИ В ЗАВИСИМОСТИ ОТ ДИАМЕТРА ОЧАГА И УДЕЛЬНАЯ МАССОВАЯ СКОРОСТЬ ВЫГОРАНИЯ ДЛЯ НЕКОТОРЫХ ЖИДКИХ УГЛЕВОДОРОДНЫХ ТОПЛИВ

Топливо		М, кг х -2 -1 м х с							
	d = 10 м	d = 10 m d = 20 m d = 30 m d = 40 m d = 50 m							
СПГ (метан)	220	180	150	130	120	0,08			
СУГ (пропан- бутан)	80	63	50	43	40	0,10			
Бензин	60	47	35	28	25	0,06			
Дизельное топливо	40	32	25	21	18	0,04			
Нефть	25	19	15	12	10	0,04			

Примечание. Для диаметров очагов менее $10\,\mathrm{m}$ или более $50\,\mathrm{m}$ следует принимать величину E такой же, как и для очагов диаметром f $10\,\mathrm{m}$ и $50\,\mathrm{m}$ соответственно.

При отсутствии данных допускается принимать величину ${\sf E}$ f

-2 —2 равной: 100 кВт х м — для СУГ, 40 кВт х м — для нефтепродуктов, 40 —2

кВт х м для твердых материалов.

Рассчитывают эффективный диаметр пролива d, м, по формуле:

$$d = \frac{\sqrt{4 \times F}}{\sqrt{-----}}$$
 (49)

где F - площадь пролива, кв. м.

Вычисляют высоту пламени Н, м, по формуле:

$$M = 42d (-----),$$
po x \/\frac{g x d}{B} (50)

где:

М — удельная массовая скорость выгорания топлива, -2 —1 $\,$ кг x м $\,$ x c ;

ро – плотность окружающего воздуха, кг х м ;

g = 9,81 м х с $\,$ - ускорение свободного падения. Определяют угловой коэффициент облученности F по формулам:

где F , F – факторы облученности для вертикальной и v н горизонтальной площадок соответственно, определяемые с помощью выражений:

$$F = -- [-x arctg(------) - - {arctg(/----)} - V ПИ S /2 /S - 1$$

$$F = \frac{1}{--} [------ x \arctan((/------)) - (B-1)x(S-1)]$$

$$H = \pi M /2 /2 /B - 1$$

$$2$$
 2
 $A = (h + S + 1) / (2S);$ (54)

$$B = (1 + S) / (2S); (55)$$

$$S = 2r / d; \tag{56}$$

$$h = 2H / d, \tag{57}$$

где r - расстояние от геометрического центра пролива до облучаемого объекта, м.

Определяют коэффициент пропускания атмосферы по формуле:

$$-4$$
 Tay = exp[-7,0 x 10 x (r - 0,5d)]. (58)

-2

58. Интенсивность теплового излучения q, $kBt \times M$, для "огненного шара" вычисляют по формуле (48).

Величину E определяют на основе имеющихся экспериментальных ${\sf f}$

-2

данных. Допускается принимать E равным 450 кВт х м .

Значение F вычисляют по формуле:

$$F = -----, (59)$$

$$q \qquad 2 \qquad 21,5$$

$$4 \times [(H / D + 0,5) + (r / D)]$$

$$s \qquad s$$

где:

Н - высота центра "огненного шара", м;

D — эффективный диаметр "огненного шара", м; s

r - расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром "огненного шара", м.

Эффективный диаметр "огненного шара" D определяют по формуле: s

$$0,327$$
 $D = 5,33m$, (60)

где m - масса горючего вещества, кг.

Величину H определяют в ходе специальных исследований. Допускается принимать величину H равной D / 2.

Время существования "огненного шара" t , c, определяют по s формуле:

$$t = 0,92m . (61)$$

Коэффициент пропускания атмосферы тау рассчитывают по формуле:

$$-4 /2 2$$

$$\text{Tay} = \exp[-7,0 \times 10 \times (/r + H - D / 2)]. (62)$$

7. МЕТОД ОЦЕНКИ ИНДИВИДУАЛЬНОГО РИСКА

- 59. Настоящий метод применим для расчета величины индивидуального риска (далее по тексту риска) на наружных установках при возникновении таких поражающих факторов, как избыточное давление, развиваемое при сгорании газо-, паро- или пылевоздушных смесей, и тепловое излучение при сгорании веществ и материалов.
 - 60. Величину индивидуального риска R при сгорании газо-,

паро- или пылевоздушных смесей рассчитывают по формуле:

где:

Q — годовая частота возникновения i-й аварии с горением вi

газо-, паро- или пылевоздушной смеси на рассматриваемой наружной установке, 1/год;

Q - условная вероятность поражения человека, находящегося впі

на заданном расстоянии от наружной установки, избыточным давлением при реализации указанной аварии i-го типа;

n - количество типов рассматриваемых аварий.

Значения Q определяют из статистических данных или на основе ві

методик, изложенных в нормативных документах, утвержденных в установленном порядке. В формуле (63) допускается учитывать только одну наиболее неблагоприятную аварию, величина Q для которой

принимается равной годовой частоте возникновения пожара с горением газо-, паро- или пылевоздушных смесей на наружной установке по нормативным документам, утвержденным в установленном порядке, а значение Q вычислять исходя из массы горючих веществ, вышедших в

атмосферу, в соответствии с п. п. 37 - 43.

61. Величину индивидуального риска R при возможном сгорании п

веществ и материалов, указанных в табл. 7 для категории В, н

рассчитывают по формуле:

$$R = SUM Q \times Q,$$

$$\pi i=1 fi f\pi i$$
(64)

где:

 ${\tt Q}$ - годовая частота возникновения пожара на рассматриваемой ${\tt fi}$

наружной установке в случае аварии і-го типа, 1/год;

Q — условная вероятность поражения человека, находящегося $f\pi i$

на заданном расстоянии от наружной установки, тепловым излучением при реализации аварии i-го типа;

n - количество типов рассматриваемых аварий.

Значение Q определяют из статистических данных или на основе fi

методик, изложенных в нормативных документах, утвержденных в установленном порядке.

В формуле (64) допускается учитывать только одну наиболее неблагоприятную аварию, величина Q для которой принимается равной

годовой частоте возникновения пожара на наружной установке по нормативным документам, утвержденным в установленном порядке, а значение Q вычислять исходя из массы горючих веществ, вышедших в

атмосферу, в соответствии с пунктами 37 - 43.

62. Условную вероятность Q поражения человека избыточным впі

давлением при сгорании газо-, паро- или пылевоздушных смесей на расстоянии r от эпицентра определяют следующим образом:

вычисляют избыточное давление ДЕЛЬТА Р и импульс і по методам, описанным в разделе 6 (методы расчета значений критериев пожарной опасности для горючих газов и паров или метод расчета значений критериев пожарной опасности для горючих пылей);

исходя из значений ДЕЛЬТА Р и і вычисляют величину "пробит"-функции \Pr по формуле:

$$Pr = 5 - 0,26ln(V),$$
 (65)

где:

гле:

ДЕЛЬТА Р - избыточное давление, Па;

і - импульс волны давления, Па х с;

с помощью таблицы 9 определяют условную вероятность поражения человека. Например, при значении Pr=2,95 значение Q=2%=0,02, а при Pr=8,09 значение Q=99,9%=0,999.

Таблица 9

ЗНАЧЕНИЯ УСЛОВНОЙ ВЕРОЯТНОСТИ ПОРАЖЕНИЯ ЧЕЛОВЕКА В ЗАВИСИМОСТИ ОТ ВЕЛИЧИНЫ PR

Условная	Величина Pr									
вероятность поражения, %	0	1	2	3	4	5	6	7	8	9
0 10 20 30 40 50 60 70 80 90	- 3,72 4,16 4,48 4,75 5,00 5,25 5,52 5,84 6,28	2,67 3,77 4,19 4,50 4,77 5,03 5,28 5,55 5,88 6,34	2,95 3,82 4,23 4,53 4,80 5,05 5,31 5,58 5,92 6,41	4,56 4,82 5,08 5,33 5,61 5,95	3,92 4,29 4,59 4,85	3,36 3,96 4,33 4,61 4,87 5,13 5,39 5,67 6,04 6,64	4,01 4,36 4,64 4,90 5,15 5,41 5,71 6,08	3,52 4,05 4,39 4,67 4,92 5,18 5,44 5,74 6,13 6,88	3,59 4,08 4,42 4,69 4,95 5,20 5,47 5,77 6,18 7,05	3,66 4,12 4,45 4,72 4,97 5,23 5,50 5,81 6,23 7,33
_	0,00	0,10	0,20	0,30	0,40	0,50	0,60	0,70	0,80	0,90
99	7 , 33	7 , 37	7,41	7,46	7,51	7 , 58	7 , 65	7 , 75	7 , 88	8,09

63. Условную вероятность поражения человека тепловым излучением Q определяют следующим образом: fni

а) рассчитывают величину Pr по формуле:

$$1,33$$

$$Pr = -14,9 + 2,56ln(t \times q), \tag{67}$$

где:

t - эффективное время экспозиции, с;

 ${\rm q}$ – интенсивность теплового излучения, кВт х м , определяемая в соответствии с методом расчета интенсивности теплового излучения (раздел 6).

Величину t находят:

1) для пожаров проливов ЛВЖ, ГЖ и твердых материалов:

$$t = t + x / u,$$
(68)

где:

t - характерное время обнаружения пожара, c (допускается 0 принимать t = 5 c);

x - расстояние от места расположения человека до зоны, где -2

интенсивность теплового излучения не превышает 4 кВт х м , м;

- и скорость движения человека, м х с (допускается принимать -1 u = 5 м х с);
- 2) для воздействия "огненного шара" в соответствии с методом расчета интенсивности теплового излучения (раздел 6);
- б) с помощью табл. 9 определяют условную вероятность Q поражения человека тепловым излучением.
- 64. Если для рассматриваемой технологической установки возможен как пожар пролива, так и "огненный шар", в формуле (64) должны быть учтены оба указанных выше типа аварии.

Приложение (рекомендуемое)

РАСЧЕТНОЕ ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА Z УЧАСТИЯ ГОРЮЧИХ ГАЗОВ И ПАРОВ НЕНАГРЕТЫХ ЛЕГКОВОСПЛАМЕНЯЮЩИХСЯ ЖИДКОСТЕЙ ВО ВЗРЫВЕ

Материалы настоящего Приложения применяются для случая 100m / (рог, п х V) < 0,5С , где С – нижний св нкпр нкпр

концентрационный предел распространения пламени газа или пара, % (об.), и для помещений в форме прямоугольного параллелепипеда с отношением длины к ширине не более 5.

1. Коэффициент Z участия горючих газов и паров легковоспламеняющихся жидкостей во взрыве при заданном уровне

значимости Q (C > C) рассчитывается по формулам:

нкпр 2 нкпр 2

$$-3$$
 С 5×10 пи $\frac{1}{2} \times 10^{-2}$ НКПР $= \frac{1}{2} \times 10^{-2}$ НКПР $= \frac{1}{2} \times 10^{-2}$ $= \frac{1}{2} \times 10$

где С – предэкспоненциальный множитель, % (об.), равный: 0

при отсутствии подвижности воздушной среды для горючих газов:

при подвижности воздушной среды для горючих газов:

$$C = 3 \times 10 \xrightarrow{po V U} (4)$$

при отсутствии подвижности воздушной среды для паров легковоспламеняющихся жидкостей:

при подвижности воздушной среды для паров легковоспламеняющихся жидкостей:

m - масса газа или паров ЛВЖ, поступающих в объем помещения в соответствии с разделом 3, кг;

дельта - допустимые отклонения концентраций при задаваемом

уровне значимости Q (C > C), приведенные в таблице $\Pi 1$;

X , Y , Z — расстояния по осям X, Y и Z от источника нкпр нкпр

поступления газа или пара, ограниченные нижним концентрационным пределом распространения пламени, соответственно, м; рассчитываются по формулам (10 - 12) Приложения;

L, S - длина и ширина помещения соответственно, м;

F - площадь пола помещения, кв. м;

-1

U - подвижность воздушной среды, м х с ;

C - концентрация насыщенных паров при расчетной температуре н

t , °C, воздуха в помещении, % (об.).

Концентрация C может быть найдена по формуле:

$$P$$
 H
 $C = 100 --,$
 P
 P
 (7)

где:

Р – давление насыщенных паров при расчетной температуре н (находится из справочной литературы), кПа; Р – атмосферное давление, равное 101 кПа.

Таблица П1

Характер распределения концентраций	Q (C > C)	дельта
Для горючих газов при отсутствии подвижности воздушной среды	0,1 0,05 0,01 0,003 0,001 0,000001	1,29 1,38 1,53 1,63 1,70 2,04
Для горючих газов при подвижности воздушной среды	0,1 0,05 0,01 0,003 0,001 0,000001	1,29 1,37 1,52 1,62 1,70 2,03
Для паров легковоспламеняющихся жидкостей при отсутствии подвижности воздушной среды	0,1 0,05 0,01 0,003 0,001 0,000001	1,19 1,25 1,35 1,41 1,46 1,68
Для паров легковоспламеняющихся жидкостей при подвижности воздушной среды	0,1 0,05 0,01 0,003 0,001 0,000001	1,21 1,27 1,38 1,45 1,51 1,75

Величина уровня значимости Q (C > C) выбирается исходя из особенностей технологического процесса. Допускается принимать

Значения Х определяются по формуле:

Q (C > C) равным 0,05.

^{2.} Величина коэффициента ${\tt Z}$ участия паров легковоспламеняющихся жидкостей во взрыве может быть определена по графику, приведенному на рисунке <*>.

<*> Не приводится.

где С - величина, задаваемая соотношением:

$*$
 С = фи С , (9)

где фи – эффективный коэффициент избытка горючего, принимаемый равным 1,9.

где:

К — коэффициент, принимаемый равным 1,1314 для горючих газов 1

и 1,1958 для легковоспламеняющихся жидкостей;

К – коэффициент, принимаемый равным 1 для горючих газов и 2

K = T / 3600 для легковоспламеняющихся жидкостей; 2

К — коэффициент, принимаемый равным 0,0253 для горючих газов 3

при отсутствии подвижности воздушной среды; 0,02828 для горючих газов при подвижности воздушной среды; 0,04714 для легковоспламеняющихся жидкостей при отсутствии подвижности воздушной среды и 0,3536 для легковоспламеняющихся жидкостей при подвижности воздушной среды;

Н - высота помещения, м.

При отрицательных значениях логарифмов расстояния X , Y $$_{\mbox{\scriptsize HK}\mbox{\scriptsize TP}}$$

и Z принимаются равными 0. нкпр